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Abstract-This paper investigates analytically non-Fourier effects in a finite slab using the hyperbolic heat 
conduction model. The results for pulsed surface heat flux conditions are compared with those obtained 
from the standard parabolic heat conduction equation. Detailed analysis of transition between the ‘para- 
bolic’ and ‘hyperbolic’ behaviour of the temperature response of the pulse shows, that for L/,,/(ar) 2 25 
non-Fourier effects are negligible and the temperature response of the pulse which occurs at x = 0, gained 
in x = L, is practically equal to that developed from the parabolic heat conduction equation. Solutions 
given in this paper have a clear physical interpretation as travelling thermal waves, which enable solutions 
to this problem for a semi-infinite medium to be written. Series solutions presented here are in convenient 
form for numerical convergence, and enable one to make a deep analysis of early times of a transient stage 

in a medium, which plays an important role in the investjgation of thermal stresses. 

INTRODUCTION 

EXPERIMENTS in search of second sound [l-6] clearly 
demonstrated that for situations involving very short 
times and temperatures near absolute zero Fourier’s 
law 

q = -kgradT (1) 

which states that the heat flux q is proportional to 
the temperature gradient grad T (k is the thermal 
conductivity), become invalid, and the classical para- 
bolic heat conduction equation 

aT 
-=aAT 
at 

cannot be adequately used for the calculation of the 
desired temperature distribution in a sample after a 
pulse. 

A modified ‘non-Fourier’ heat flux law, originally 
proposed by Maxwell [7] (and later by many other 
investigators (S-13]), is 

aq ‘tx+q= -kgradZ (3) 

where z is the thermal relaxation time When equation 
(3) is incorporated into the continuity equation 

l3T 
divq = -pc- 

at (4) 

where p is the mass density and c the specific heat 
capacity, the hyperbolic heat conduction equation 
(HHCE) is obtained in the form 

a2T dT 
zdtz+%=aAT (5) 

where a = kjpc is the thermal diffusivity. 
Analytical solutions of HHCE are available in the 

literature only for some specific cases 

The temperature distribution due to a step change 
in temperature at the boundary of a semi-infinite 
medium, was given in refs. [14-161. Solution of this 
problem due to a step change of heat flux at the 
boundary surface is given in ref. [17]. A theoretical 
prediction of the heat propagation in a semi-infinite 
medium containing distributed volumetric energy 
sources is given in ref. [ 181. 

When a region of finite thickness is considered, the 
analysis of the propagation of a thermal disturban~ 
in a medium becomes an intricate matter, since the 
released energy travels as a wave while dissipating its 
energy and reflecting off the boundaries. Taitel [19] 
presents a solution for a thin layer subject to a step 
change of temperature on both its sides, while the 
same problem, but with a step change of temperature 
on one side, is solved in ref. [20]. 

Solutions for the temperature and heat flux, as pre- 
dicted by the HHCE in a region in finite thickness, 
subjected to a volumetric energy source, are given in 
ref. 1211. 

For situations in which analytical solutions are 
difficult to obtain (e.g. in the case with surface radi- 
ation, or temperature-dependent thermal conduc- 
tivity), HHCE is solved numerically in refs. [22-241. 

The existing analytical solutions of HHCE for a 
finite medium [25] are, however not in convenient 
form for numerical convergence, and require some 
lengthy manipulations, particularly for small values 
of time, which are, from the point of view of the 
experimenter, the most interesting. 

The objective of this investigation is to develop a 
solution for HHCE in the finite slab exposed to a 
pulsed surface heat flux, which is rapidly convergent 
for small values of time. We will discuss in detail the 
transition between the ‘parabolic’ and ‘hyperbolic’ 
behaviour of the temperature response of the pulse, 
and we will give the criteria for the onset of non- 
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NOMENCLATURE 

thermal diffusivity 
specific heat capacity of slab 
time distribution of heat flux at x = 0 
Fourier number, at/L2 

dimensionless duration of the pulse, 
at,/L2 

thermal conductivity 
thickness of slab 

II 
V 
Ve 
X 

x 

W, t) 

duration of the heat pulse 
dimensionless temperature 
Vernotte number 
spatial variable 
dimensionless spatial variable, .x/L 
temperature in space-time point -t’, t. 

Laplace variable Greek symbols 
heat fiux vector A difference (Laplace operator) 
amount of energy of a pulse per unit P mass density 
area t thermal relaxation time. 
time 
integral variable 
time needed for appearance of the front Subscripts 
of temperature disturbance in the b back side 
plane x = L f front side. 

Fourier effects in a medium, Analytical solutions 
given in this paper explain a structure of the tem- 
perature response on a pulse ex~rimentally gained 
by Ackerman et al. [2]. 

ANALYSIS 

Consider a slab of thickness L, initially at the equi- 
librium temperature T(x,O) = 0, with constant ther- 
mal properties and insulated boundaries. At time 
t = 0 the external surface at x = 0 is suddenly exposed 
to a time-dependent heat Aux with prescribed rate 
f(t) per unit time. 

Instu~ta~~ous pufse 
First, we develop a solution of one-dimensional 

HHCE 

a2T aT aZT o<“y<L t>O 7p+~=a~~-, . , , , (6) 

subject to the initial conditions 

T(x, 0) = 0 

$X,0) = 0 

q(s, 0) = 0 

and the boundary conditions 
.T 

(7) 

(8) 

(9) 

q(O,t) = -k;z(O,t)-z$(O,r) = Q&t) (10) 

aT 
z (L, t) = 0 or q(L, t) = 0. (11) 

Here Q is a constant and 6(t) is the Dirac delta 
function. Conditions (10) and (11) represent the 

impulse surface heat source and insulated boundary, 
respectively. 

In our previous paper [26] we presented a solution 
of HHCE (6) subjected to initial conditions (7)-(g) 
and boundary conditions 

XaT 
_ ax x=o 

= -Q&t) 

aT 

ax s=,. = 
0 

(12) 

(13) 

which represent the insulated surface at x = L, and 
the prescribed heat flux at x = 0 

q(0 t t) = ee_riT u(t) (14) r 

where u(t) is the Heaviside unit step function. 
Expression (14) follows from the one-dimensional 
equation (3), in which the right-hand side is given by 
equation (12). 

If we apply the Laplace transformation to equation 
(6) by taking into account initial conditions (7)-(9) 
then we obtain the following subsidiary equation : 

with conditions 

di= 

dx= 
- g (I +Pr), x=0 

d7 
z=o, x=L 

where 
a, 

T= 
s 

i’(x, t) eep’ dl 
0 

(16) 

(17) 
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is the Laplace transform of temperature T(x, t). 
The solution of equation (15) with respect to equa- 

tion (16) and equation (17) is 

T(x,p) = g (l(l:q7!L) [e-hX+e-h(2L-“)] (18) 

where 

h = 47dP+ l/7)/4. 

Since we seek a solution of equation (6) for short 
times, we expand the term (1 -e-““)-’ into a series 
for a large h. Here the right-hand side of equation 
(18) has the form 

x {e- h(2mL+x) +e- N2mL+2L--x)}, (19) 

Using a table of transforms [27] we can find the inverse 
transformation of equation (19) 

am, 6 
qx, t) = H(x, 1) + 7 at (20) 

where 

Semi-inJinite medium 
From the foregoing simple physical meaning of the 

individual terms of equation (21), we can easily deter- 
mine the solution of HHCE (6) subject to conditions 
(7)-(10) for the extended pulses in a semi-infinite 
medium x > 0. For this purpose it is sufficient to omit 
all the terms which represent the waves reflected from 
both boundary planes, and to take only the first term 
with m = 0, which represents the wave moving from 
the plane x = 0 to the right. Here function H takes 
the form 

Non-dimensional formulae 

If we want to express the temperature in a medium 
as a fraction of the steady-state temperature after 
pulse, i.e. 

xu t- 
[ JO 

a (2mL+2L-x) (2’) 
and Z,(z) is the modified Bessel function of the first 
kind of order zero. 

The first term in equation (21) describes the flow of 
thermal waves from the plane x = 0 to the right, and 
the second one describes the waves reflected from the 
plane x = L moving to the left. 

Extended pulse 

Now suppose that the instantaneous sources occur 
at t = t’, i.e. we shift the time origin to -t’ by writing 
t - t’ in place oft. Suppose also that there is a sequence 
of instantaneous sources Q/pc in the interval 0 to t,. 
Let this time sequence be of magnitude proportional 
to f (t’), where f (t’) is a non-dimensional function. 
To obtain the temperature distribution at time t, we 
integrate from 0 to t when t < t, or from 0 to t , when 
t > t,. In the latter case we have 

H(x,t-tr’)-zaH(;:,-“) dt’. 1 
(22) 

; ;’ f (t’) dt’ 
i 

then equation (22) has the form 

V(x, t) = 

H(x, t - t’) - 7 aH’;t;- “I 1 dt’ 

s ” 

(23) 

f (t’) dt’ 
II 

and the dimensionless form of H(x, t) is 

xf IO& 
In=0 { [ J( t2-(2mL+x)2i >I 

xu[t-(2mL+x)J(i)] 

+zll ; 
[ J 

t2-(2mL+2L-x)2i >I 
xu t-(2mL+2L-x) [ J( >I> t (24) 

For convenience in the subsequent numerical analysis, 
the following dimensionless quantities are introduced : 

Fo = $ (Fourier number) (25) 

ve = ?!!& 
L 

(Vernotte number) (26) 
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X = g (dimensionless coordinate). (27) 

The function H, given by equation (24), after sub- 
stituting equations (25)-(27) takes the form 

H(X, Fo) = A exp 

&,,/(Fo’-(2m+X)‘Ve’)) 

xu[Fo-(2m+X)Ve] 

+I, ?:clj(Fo’-(2m+2-X)‘vr’) 
> 

xu[Fo-(2m+2-X)Ve] 
1 

(28) 

The dependence of temperature rise on time (Fourier 
number) in the plane X = 1 is of great interest from 
the experimental point of view. From equations (23) 
and (24) we immediately obtain 

RESULTS AND DISCUSSIONS 

Numerical results displaying the develocment of 
the temperature distribution arising from a pulsed 
surface heat source at x = 0 on a slab with thickness 
L are now presented. 

Figure 1 shows the temperature distribution vs pos- 

J J’(Fo’) 

” V(l,Fo) = 
1 

H(l, Fo-Fo’)- Ve’ 
aH(1, Fo-Fo’) 

aF0’ 1 dFo, 

s 

‘QI 
~ for Fo>Fo, (2% 

f(Fo’) dFo’ 
0 

x 10 &j(Fo’-(2m+ 1)‘Ve’) 
> 

xu[Fo-(2m+l)Ve]-exp( -3) 

&d[(Fo-Fo,)‘-(2m+1)‘Vez]) 

xu[Fo-Fo,-(2m+l)Ve] (32) 

If Fo < Fo,, then in equation (23) Fo occurs instead 
of Fo ,, and the last term in equation (32) becomes 
equal to zero. 

where 

Fo, =$, Fo’=$. 

ition after a rectangle pulse with duration Fo, = 0.01 
at various times Fo, and for l/Ve = 2. Here we note 

(30) 
that the series solution, utilized to compute the tem- 
perature distributions 

Relation (29) represents the formula for the cal- 
culation of the time course of the temperature rise at 

V(X, Fo) = 2 & 
{ s 

H(X, Fo - Fo’) dFo’ 
0 

x = L for the finite medium limited by the thermally 
insulated planes x = 0 and L, where the heat flux with +[H(X,Fo)-H(X,Fo-Fo,)] (33) 
the prescribed rate f’(t), (t~(O,t,)), occurs at the 1 

plane x = 0. where H(X, Fo) is given by equation (28), is in very 
In the special case of a rectangular pulse with dur- convenient form for the numerical convergence for a 

ation Fo,, when 

,f(Fo) = u(Fo)-u(Fo-Fo,) 

we obtain from equation (29) for Fo > Fo, 

expression 

x r’exp(- Fs)I,,(2& 

x~[(Fo-F0’)~--(2m+l)~Ve~] dFo’ 
> 

xu[Fo-(2m+l)Ve]+exp 

(31) 

the 

FIG. 1. 

10 l/Ve =2 
Fol= 0.5 

> . Fo = 0.15 

: 

Fo’0.4. 

n 
0 OS 1 

POSITION X 

Temperature distribution vs position after a rectangle 
pulse. 
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small value of time-that is in contrast to the solution 
of HHCE for the similar problems obtained by the 
method of Fourier transformation [2 1, 251. 

The dominant feature in this figure is that a surface 
flux of heat gives rise to a thermal wave which travels 
in the medium at a finite velocity, given by J(a/r). 
The width of this wave AX depends on the pulse 
duration Fo,, and the speed of propagation of heat 
disturbance - 1 / Ve, namely 

The height of the discontinuity on the front side of 
the wave A V, decays exponentially with time Fo, and 
depends on both Fo, and Ve. It can be determined 
from 

(35) 

which can be easily evaluated from equation (33). 
Similarly, we can find the peak of discontinuity on the 
back side of the wave 

AVb=$exp(--9). (36) 

The wave front is dissipating its energy along its 
path, and the time needed for its decay can be esti- 
mated from equation (36) or equation (35). 

The temperature discontinuities at the front and 
back side of the wave are in this case determined 
by the existence of discontinuities in the heat flux 
distribution function on the surface as defined by con- 
dition (31). The existence of a thermal wave front is 
conditioned by the fact, that the expression in square 
brackets in equation (33) is non-zero. This expression 
represents the wave part of the solution. The integral 
in equation (33) represents the dissipative part of the 
solution. 

The curve for Fo = 0.8 (Fig. 1) represents the dis- 
tribution of temperature vs position in the slab after 
the wave front has been reflected from the insulated 
boundary surface at X = 1, and returned travelling in 
the negative X-direction. A detailed discussion of this 
process of reflection of the wave front at both surfaces 
was given in ref. [21]. 

The effect of Vernotte number on temperature vs 
time plot at X = 1 is demonstrated in Fig. 2. Here we 
are observing the temperature responses on a rec- 
tangle pulse on X = 0, with the duration Fo, = 0.05. 
As we see from this analysis, curves for 1jVe 3 25 
are practically identical with the parabolic one (for 
l/Ve + co), given by 

2 coFu 1 
V(1, Fo < Fo,) = - 

JTCFO ‘1 In=~ o J(Fo-FO') 

(2n+ II2 
4(Fo - Fo’) 1 dFo, 

2 
Fo,= 0.05 We 3 fJ;(ool - 

. . . . . . 
= 10 _____ 

O 0.1 0.2 0.3 0.4 0.5 

TIME, Fo 

FIG. 2. Effect of Vernotte number on temperature vs time 
plotatX= 1. 

I 

V(1,Fo > Fo,) = 
&“!,,r J(Fo~Fo’) 

(2nf I)* 

4( Fo - Fo' ) 1 dFo’ . (37) 

The inequality l/Ve 2 25 represents the condition of 
the occurrence of a difference in the temperature 
responses given by the solution of HHCE, namely 
relation (32), and the solution of the parabolic heat 
conduction equation given by equations (37). From 
the definition of Vernotte number (26) follows, that 
this condition can also be written in the form 

25~ 2 t* (38) 

where t* is the time needed for appearance of the front 
of the thermal wave in the plane X = 1. 

The common value of Ve at room temperature and 

for the typical solids (L - IO-* m, r - lo-” s, 
a - 10-j m2 SK’) is of the order of 10-6. That means 
that the effect of the finite velocity of propagation of 
the thermal disturbance in the common materials with 
typical dimensions of the samples does not appear. 
However, at the low temperatures the values of a 
and t increase, therefore at a certain value of L the 
conditions can become favourable for the observation 
of the temperature responses at the pulses which are 
supposed by the solution of HHCE. 

From the point of view of the analysis of propa- 
gation of the thermal wave, presented when discussing 
Fig. 1, it means that if l/Ve 2 25, then the thermal 
wave front is damped so, that when it arrives at X = 1, 
it is negligibly small. The satisfaction of condition (38) 
does not represent a guarantee that the temperature 
inside the slab is given by the solution of the parabolic 
heat conduction equation. For the values l/Ve sz 25 
and for Fo < Ve it is certainly not the case, especially 
for the short pulses Fo, << Fo. Inside the slab the tem- 
perature distribution vs position can be considerably 
different from that, which is described by the solution 
of the classical equation of heat conduction of the 
parabolic type. 

Similarly as in Fig. 1 we can find the formulas for 
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FIG. 3. Comparison of the theoretically predicted tem- 
perature response on the pulse and experimentally gained 

curve. 

the determination of the discontinuities in tem- 
perature registered in the plane X = 1. The first 
appearance of the front of the wave in this plane 
occurs at the time Fo = Ve. For this discontinuity it 

follows from equation (35) that 

From equation (32) we can conclude that the second 
discontinuity, which represents the first appearance of 
the back side of the thermal wave front in the plane 
X = 1, is given also by equation (39). 

The heights of the next discontinuities (nth) are 

given by 

n = 1,2,3,... (40) 

From formula (40) the phenomenological criterion 
for the appearance of the second ‘jump’ in the tem- 
perature vs time plot can be determined. This is com- 
monly regarded as a second sound echo [2]. For exam- 
ple, for Fo , = 1 0m3 and n = 2, we have from formula 
(40), that AV > lo-* if l/Ve < 6.4. 

The conditions on the existence of second sound in 
dielectric solids, taken from the point of view of the 
phonon transport mechanism, are developed in ref. 

PA. 
A comparison of our theoretically predicted tem- 

perature response and those obtained experimentally 
by Ackerman et al. [2] is presented in Fig. 3. Here we 
take the value Fo, = 0.02, and for l/ Ve we choose the 
value equal to 2, which are in the agreement with the 
data reported in ref. [2]. Probably due to the finite 
response time of the detector used, the experimental 
curve obtained for solid helium differs from that, cal- 
culated here. Nevertheless, as can be seen from Fig. 
3, essential features of the experimental curve are sat- 
isfactorily explained by our hyperbolic solution pre- 
sented here. 

The effect of the pulse duration Fo, is demonstrated 
in Fig. 4, where the temperature field vs time at the 
boundary plane X = 1 is shown. As follows from for- 

.,” 

l/Ve=oo; Fo, =O.l - 
l/Ve=lO ; Fo, : 0,005 _...... 

= 0,025 ______ 

0.1 0.2 0.3 0.4 0.5 
TIME, Fo 

FIG. 4. Effect of pulse duration on temperature vs time plot 
atX= 1. 

mula (40), increasing the pulse duration Fo, decreas- 
ing the energy concentration in the peak, the height 
of the wave front becomes smaller. We observe from 
Fig. 4, that for Fo, > 0.075 the hyperbolic curves 
loose their discontinuous character (for a given value 
live), and they resemble more and more the curves 
determined by the solution of the classical heat con- 
duction equation. 

If we use the possibility of the analytical description 
of the integral occurring in equation (33) for X = 0, 
whereby we use the formula presented in ref. [28] 

s 

I 
e-‘Z,(t)dt = ze-‘[Z,(z)+Z,(z)] (41) 

0 

then the temperature on the front side of the slab, for 
early stages of the transient (for Fo < 2Ve), can be 

expressed in the form 

This relation describes the temperature of the surface 
of a slab, suddenly exposed to an intensive laser pulse 
of short duration, which is a problem of current inter- 

est [30]. 
Unlike the relation for the surface temperature of 

the slab, derived from the parabolic solution, which 
starts at time instant Fo = 0 from zero and is rep- 
resented by a continuous function 

1 
V(O,Fo> Fo,) =- 

+Fo, 
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our solution (42) starts from the value Ve/Fo,, and 
that value has also the second discontinuous jump in 
time Fo, (when Fo, < 2Ve), toward the lower tem- 
perature. In time Fo = 2Ve the reflected thermal wave 
front arrives at the front of the slab, and it is necessary 
to add to equation (42) a further term which contains 
the integral. 

This above-mentioned double terirperature jump 
can, in the vicinity of the exposed surface, give rise to 
a considerable thermomechanical tension, and may 
lead to the destruction of this surface. All the next 
possible discontinuous jumps in temperature are 
smaller in magnitude than the first two, therefore they 
are, from the point of view of material destruction, 
not important. 

CONCLUSIONS 

The Laplace transform method has been applied to 
develop a solution of one-dimensional HHCE in an 
insulated finite slab with a surface heat flux boundary 
condition. The numerical analysis of given solutions 
shows that in the slab moves a dumping thermal wave 
which travels through the medium at a constant finite 
speed, and is reflected by both boundary surfaces, 
while dissipating its energy along its path. 

We present the relations which describe the par- 
ameters of this wave and its spatial and temporal 
development for the rectangular pulsed surface heat 
source. From the analysis of the transition area 
between the hyperbolic and parabolic description of 
the temperature responses on the pulses, determined 
at X = 1, it follows the condition for the onset of 
non-Fourier effects, l/Fe 6 25, in the said arrange- 
ment of the heat source, and the temperature detector. 
The gained solutions are suitable from the point of 
view of numerical convergence in early stages of the 
transient. As an illustration of the said topic we pre- 
sent an example for the calculation of the dependence 
of temperature vs time in the front of a slab. From 
the point of view of the occurrence of extremal ther- 
motension in the material, the mentioned time interval 
becomes critical. 

The simple physical interpretation of the individual 
terms in given solutions of HHCE makes it possible 
to find the solutions to HHCE, with the same bound- 
ary and initial conditions also for a semi-infinite 
medium. 
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PROPAGATION “NON FOURIERISTE” DES PULSATIONS DE CHALEUR DANS UN 
MILIEU FIN1 

R&nn&On ttudie analytiquement les effets dans une couche finie de la conduction hyperbolique de la 
chaleur. Les rtsultats pour des conditions de flux thermique pulse a la surface sont compares avec 
ceux obtenus a partir de l’equation parabolique classique. Une analyse detaillie de la transition entre 
comportement “parabolique” et “hyperbolique” de la reponse en temperature a la pulsation montre que 
pour L/J(ar) > 25 les effets de la conduction non classique sont negligeables. Les solutions donnees ont 
une interpretation physique Claire, comme les ondes thermiques, ce qui rend possible l’ecriture immediate 
des solutions pour un milieu semi-infini. Ces solutions en dtveloppement en serie prtsenttes ici conviennent 
pour la convergence numerique et elles permettent de faire une analyse fouillee des premiers instants du 

phenomine dans le milieu, ce qui est trts important dans l’etude des contraintes thermiques. 

AUSBREITUNG VON HEIZ-PULSEN IN EINEM ENDLICHEN MEDIUM: NICHT- 
FOURIER-EFFEKTE 

Zusammenfassung-In dieser Arbeit werden mit Hilfe eines hyperbolischen Wgrmeleitungs-Modells auf 
analytische Weise Nicht-Fourier-Effekte untersucht. Die Ergebnisse fur pulsierende Wlrmestromdichte an 
der Oberfllche werden mit denjenigen verglichen, welche mit Hilfe der iiblichen parabolischen Standard- 
Warmeleitgleichung ermittelt wurden. Eine detaillierte Untersuchung des Ubergangs zwischen “para- 
bolischem” und “hyperbolischem” Verhalten der Temperatur-Antwort auf die pulsierende Wand- 
Warmestromdichte zeigt, daB fur L/,/(~T) !: 25 Nicht-Fourier-Effekte vernachlassigbar sind und die 
Temperatur an beliebiger Stelle praktisch gleich derjenigen bei “parabolischer” Rechnung ist. Die an- 
gegebenen Losungen lassen sich klar als wandernde thermische Wellen interpretieren, was es ermiiglicht, 
die Liisungen fiir dieses Problem als halb unendlichen Korper anzugeben. Die gezeigten Reihenentwick- 
lungen haben eine fur numerische Konvergenz angenehme Form und ermoglichen eine tiefgreifende 
Untersuchung der Anfangsphase transienter Anderungen, was im Hinblick auf Wlrmespannungen 

sehr wichtig ist. 

PACI-IPOCTPAHEHHE TEI-IJIOBbIX MMI-IYJIbCOB B OFPAHH4EHHOm CPEAE, HE 
I-IOArH,IHIIIOIIIEECCI 3AKOHY @YPbE 

Ami0~auns-C noMombro rmtep6onmrecxofi Monenn rennonposonnocra B orpann’tenuoi nnacrmte 
aHa,,HTHWCKW kW2nefij'WTCK 3@@eKTbI, He lTO!JSHHRK)l.WeCII 3aKOH,' @ypbe. Pe3ynbTaTbI ,.,."K n,'nbCH- 
ppWer0 Ten,‘OBOrO nOTOKa Ha ,lOBepXHOCTH CpaBHHBafOTCK C ~aHHbIMB,nOn,'SeHHbIMH 83 CTaHnapT- 
HO10 napa6onHwcKoro YpaBHeHHR TeMOllpOBOnrlOCTH. AeTaJIbHblk aHaJlH3 llOKa3bIBaeT, YTO &WI 
cnygan L/J(ar)z 25 OTKJIOHeHUn OT 3aKoHa@ypbe,npeHe6pewtHMo ManbI,aTeMnepaTypHbIfi OTKnUK B 
TOYKeX = LHa HMIl)V%C,B03HWICaKWifi IlpHX = O,IIpaKTHWKH paBeHnOJI)"IeHHOM)'H3napa6onH'IeC- 
KOrO YpaBHeHHK. AaHHbIe peUIeHHK HMeIOT KCH)'Kl @H3HWCKylo HHTeplT~TaWiKl B BHLIe ABWKJ'LUHXCK 
Te,,,,OBbIX BOnH, J,WW,QO B03MOmHOCTb 3anHCaTb pemeHHe 3TOii 3aAa411 ,J."K nOn,'OrpaHH'leHHOii 
cpenbr. Pemerinn,npe~craenetmbre B ewe pmoe, ynO6Hbt WR vHcneHHor0 meTa w n03BonmoT npo- 
BeCTH WTa,,bHMii aHann HaWnbHOii CTanHH n‘?~XOAHOrO I,epHOna B C~L,e, KOTOpaK arpaeT BiUKHyIo 

ponbnpuwccnenoBaHHnTepMHrecKHxHanpnaeHHii. 


